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ABSTRACT

The solvability of a linear program is characterized in terms of the

existence of a fixed projection on the feasible region, of all sufficiently

large positive multiples of the gradient of the objective function. This

projection turns out to be the normal solution obtained by projecting the

origin on the optimal solution set. By seeking the solution with least

2-norm which minimizes the 1-norm infeasibility measure of a system of

linear inequalities or of the optimality conditions of a linear program, one

is led to a simple minimization problem of a convex quadratic function on

the nonnegative orthant which is guaranteed to be solvable by a successive

overrelaxation (SOR) method. This normal solution is an exact solution if

the original system is solvable, otherwise it is an error-minimizing solu-

tion. New computational results are given to indicate that SOR methods can

solve very large sparse linear programs that cannot be handled by an ordinary

linear programming package. <
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SIGNIFICANCE AND EXPLANATION

Linear programming problems may not have exact solutions due to

inaccuracies in the data. By considering approximate solutions which

are closest to the origin we have come up with a simple but powerful

iterative method that can solve exactly (if the linear program is

solvable) or approximately (if the linear program is unsolvable) very

large sparse linear programs that cannot be solved by ordinary linear

programming techniques such as the simplex method.
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The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the author of this report.
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NORMAL SOLUTIONS OF LINEAR PROGRAMS

0. L. Mangasarian

1. Introduction

A nolamZ soluion to a linear program is an exact solution with some

least norm property if the linear program is solvable, otherwise it is an

approxwite solution with some least norm property also. By an appvoximas

solution we mean a point which minimizes a measure of satisfaction of the

optimality conditions of the linear program. By considering normal solu-

tions we are led to:

(i) Iterative successive overrelaxation (SOR) methods capable of

solving very large linear programs.

(ii) Approximate solutions to poorly posed or unsolvable linear

programs.

(iii) A stable solution or approximate solution, to a linear program,
endowed with a least norm property.

For solvable linear programs our normal solution is essentially equiv-

alent to that of Tikhonov and Arsenin [16) which they obtain by solving an

asymptotic problem [16, Theorem 1, p. 226], whereas our solution is obtained by

solving a simpler exact problem, problem (2.2) for any s((O,i] for some i>O

(Theorem 2.1). Tikhonov and Arsenin's weaker asymptotic result comes about

because they square the objective function of the linear program in their

regularization problem [16, p. 226] and thereby lose an essential exact

feature of our problem (2.2). Tikhonov and Arsenin also do not consider the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work sponsored by National Science Foundation
Grant MCS-8200632.

Z. . - .,...

. . .. . I~ i 
-

[-:: I 
i
.... . . .: I .. .. . .... : . .. " '" " : ' ' '<



important case of possibly unsolvable linear programs (Section 4), nor

do they give explicit computational methods for solving their asymptotic

pro bl em.

We outline now our principal results and their relation to other work.

In Section 2 we consider normal solutions of solvable linear programs. In

Theorem 2.1 we give a complete characterization of the solvability of a

linear program in terms of a 2-norm projection on the feasible region of a

sufficiently large but finite positive multiple of the gradient of the

objective function. This projection turns out to be fixed and equal to the

,. unique 2-norm projection of the origin on the optimal solution set. Part

of Theorem 2.1, a(i), follows readily from [13, Theorem 1), while its

converse, part a(ii), which is essential for a comprehensive justification

of the linear programing SOR Algorithm 2.3, has not been available before.

Theorem 2.2, which follows from Theorem 2.1 and quadratic programming

duality, characterizes the solvability of a linear program in terms of the

solvability of a convex quadratic function minimization on the nonnegative

orthant (2.7) without any a priori assumptions regarding the solvability

of the linear program (2.1) as was the case in [11,12]. In addition,

Theorem 2.2 gives the complete basis for the linear programing SOR

Algorithm 2.3 and its convergence (Theorem 2.4) thereby sharpening earlier

convergence results (11,12].

In Section 3 we turn our attention to a system of possibly inconsis-

tent linear inequalities (3.1) and reduce it to the problem of finding

the unique least 2-norm solution of the problem of minimizing the 1-norm

infeasibility measure of (3.1). The principal advantage of this approach

is that it leads to the SOR Algorithm 3.1 which, unlike most other
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iterative procedures [1,15,3] which require an a priori consistency as-

sumption, will converge no matter whether the original system (3.1) is

consistent or not. In either case Algorithm 3.1 will give an exact or

approximate solution with least 2-norm (Theorem 3.2). Among the poten-

tial useful applications of this approach is in the image reconstruction

techniques of tomography [7,8] which require the solution of enormous

sparse systems of linear equations with nonnegative variables. Most

current iterative techniques for the tomography problem [7,8,2] need an

a priori assumption regarding the consistency of the original system.

In contrast our Algorithm 3.1 needs no such assumption.

In Section 4 we consider possibly unsolvable linear programs and

reduce their solution to finding the least 2-norm primal-dual solution

which minimizes the 1-norm of the optimality conditions of the given

linear program. This approach leads to an SOR algorithm that is guaran-

teed to work whether the original linear program is solvable or not. In

either case it will give an exact or approximate solution with least

2-norm.

Finally in Section 5 we give some numerical comparisons for one

vorsion of our linear programming SOR algorithm with the XMP version [14]

of the revised simplex method for medium and large size sparse linear

programs. These comparisons indicate that SOR methods can solve very

large sparse linear programs that cannot be solved by an ordinary linear

programing package.

We briefly describe the notation used. All matrices and vectors are

real. For the mxn matrix A we denote row i by A1 , column J by A.j

and the element in row I and column j by A1 j. For x in the real

4 J . .....
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n-dimensional Euclidean space Rn, x denotes element i for iml,.... qnq

and x+ denotes the vector with components (x) a axfx1s, u,..n

Vectors are either row or column vectors depending on the context. For x
and y n R xy denotes the scalar product I ii hie lxl

max IlAxil for an mxn matrix. The vector e will denote a vector of
jfx II.'
ones in any real Euclidean space. Rn will denote the nonnegative orthant

{xlxeR , x>OJ. For a point c in R , a closed set X in R~ and a

number te [I,-] the t-norm projection pt(cX) of the point c on X

is defined by

llc-pt(c,X) 11. min llc-xIltxcE X

For a function f: R" * R which is twice differentiable on Rn Vf(x)

denotes the n-dimensional gradient vector at x with components

Vx f(x), 1-1... n. and V2 f(x) denotes the nx n Hessian matrix at

x with elements (72 f(x))ij. I j-1l......n.

~T777i7I7 . -
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2. Normal solutions of solvable linear programs

We consider here the linear program

(2.1) maximize cx subject to xeX:- {xlxcRn, Ax<b, x>0}

where b and c are given vectors in Fm and Rn respectively and A

is a given mxn real matrix. Let X denote the (possibly empty) optimal

solution set of (2.1). We shall assume throughout this section that this

linear program is feasible, that is X is nonempty. We begin with the

following fundamental and geometrically plausible result.

2.1 Theorem Let the linear program (2.1) be feasible. Then

a. (I) max cx has a solution "3] >0: p2 ( ,X)-P 2 (0,X) for all c (0,g]

*.(ii) max cx has a slto 3'> 0, ': P2(S, X) *ifor allI c (0,i]
a xieX £=

where P2 (x,X) denotes the 2-norm projection of x on X.

b. sup cx - Ilpz( 'X)II as c - 0+
xEX

Proof

a(i): By noting that p2 (S,X) is a solution of either of the equivalent problems

(2.2) min lix-11t2 *-1 in cx +C1 2
xcX 2 xX 2

the Implication of a(i) follows from Theorem 1 of [131.

a(li): Since - p2 (,',X) for all c (0,J], then there exists

(u(c), v(t.))curn such that (i, u(e), v(E)) satisfies the Karush-Kuhn-

Tucker conditions [9] for (2.2), that is
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(2.3) - C + ATu() - v() * 0, v()i 0 O, Ai < b, u(c)(A7-b) 0 0,I ~(), V(C)) !_ 0, wC d(o,j]

By the fundamental theorem for the existence of basic feasible solutions

for linear equations with nonnegative variables [6, Theorem 2.11), and the

complementarity conditions u(E)(AR-b) = 0, v(e)i w 0, it follows that

there exist (u(e), v()) satisfying (2.3) such that all elements ofI(u(), v()) not corresponding to some subset of k linearly independent

columns of [AT -I] are zero. Since the rank of [AT -j] is n, it

follows that we can take k - n and denote by B(c) as this "basis"

matrix of n linearly independent columns of [AT -I. Hence it follows

for such a "basic" solution (u(c), v(e)) satisfying (2.3) that

. I1u(c) v(e)ll I (Ilcll +EIIiII)IIB(F)'ll VC . (o,:]

Since [AT -I] contains a finite number of basis matrices it follows that

for some basis matrix B, IlB(0)' 1< 11I 1'B for all cc (0,E] and

consequently

(2.4) Ilu(C) v(C)ll _< (llcll +ill ill)JIB-'Ill v. " (0.E]

Now let {e i} be a sequence of positive numbers in (0,Z] converging to

0. Then there exists a sequence ((u(c ), v(P. ))} satisfying (2.3) and

(2.4) and hence it is bounded and has an accumulation point (

satisfying

(2.5) -c + ATu - = 0, i = 0, AR < b, 5(A-b) - 0, (i,5;,) > 0

These are the Karush-Kuhn-Tucker conditions for the linear program (2.1)

and hence i solves (2.1). Since (i, u(c), v(c)) also satisfies (2.3)

-"... .4 -. !
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which are also the Karush-Kuha-Tucker conditions for

min ixii~ subject to Ax ;S b, x > 0, cx > ci

with optimal x ujand optimal multiplier vector of ( u(e) ), , J-U it

follows that i*p 2(0,X).

(b) (4-): if not then the linear program (2.1) has a solution and by part

a(i) of this theorem R~ > 0: P2(CX) - P2(0,X) for all cc Mil~. This

however contradicts the hypothesis that IjP2(',X)II _" - as c _" 0+.

(ws): If not then, for a sequence of positive numbers (e1) converging to

zero, th sequence 1P2 1 X) i s bounded. By def ining x(c1 ):_ 2. -X

we get that X(c ) and some (u(c ), v(c ))4E" 1 ' satisfy the Karush-

Kuhn-Tucker conditions for mm jjx- -TI for 1-1.2,... that is

(2.6) six(£i')..c+ATu(c) - v(g) 0. v(ei) x(c' )0. Ax(c ),Ib, u(e )(Ax(c )-b) OS

We c ). u( i ). v(c~) 1 0

By the same argument as in the proof of part a(ii) of this theorem we can show

that the sequence ((u(ce ). v(c1)) satisfying (2.6) can be taken as bounded

since Wxe')) is also bounded. Thus the sequence ((X(c1) U(e1  v(cm )

is bounded and has an accumulation point (i~,)satisfying (2.5). Hence

solves (2.1) which contradicts the hypothesis that sup cx * .

XcX

By noting that the quadratic programing dual [9] to (2.2) is

(2.7) minimize '1rJJATu-v-cJJt2 + ebu
2H _ __e
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where the primal and dual variables x and (uv) are related by

(2.8) x " I(-ATu +v+c)

the following theorem is a direct consequence of Theorem 2.1.

2.2 Theorem The linear program (2.1) is solvable if and only if there

exists an i > 0 such that for each cc (O,i] the quadratic program

(2.7) has a solution (u(), v(c)) and such that the vector i defined by

I (-ATu(c) + v (c) + c) cc (0,iJ(2.9) £:

is independent of c, in which case P - P2(0,X).

If we define the objective function of (2.7) by

(2.10) f(z):- -EIA u -v -c..1 + cbu, Z:(

then we can prescribe an SOR procedure for solving (2.7) which in view of

Theorem 2.2 solves the linear program (2.1). The SOR procedure is essen-

tially a gradient projection algorithm of the following type

(2.11) zi = (z -w(V 2 f(z)) V f( ..... 9,zj. 1 , z  .....1+ Zm+1 +

0 < w < 2, Jl, ..... ,m+n.

More specifically [12] the following SOR algorithm for solving the linear

program (2.1) follows directly from (2.11) and (2.10).

0 0 m~n
2.3 LPSOR(A, b, c) Algorithm Choose (uO, vO) c R n , we (0,2) and

c > 0. Having (ut, vt ) determine (ut +1 , vt+1 ) as follows:

p .-j -1'
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u~ (u'---A (AT). u il+m( tcj) fAJ 1IAJII1 tiL-1 t+1 z Xv
2i ufor J>l

u+1 -0 if A - 0 Jl ......,m

v+1- (vi - w ( - ATu+ 1 +v + c ) )

Note that Algorithm 2.3 is sparsity-poeserving for it works with the

rows of A only and the product AAT need not be computed.

The foklowing convergence theorem which follows from Theorem 2.2 above

and [12, Theorem 2] sharpens previous LPSOR convergence theorems

(11, Theorem 3.2] and [12, Theorem 4].

2.4 LPSOR(A. b, c) Convergence Theorem

(a) The linear program (2.1) has a solution if and only if there exists a

real positive number i such that for each cE (O,E], each accumula-

tion point (u(c), v(c)) of the sequence {(uiv )} generated by the

LPSOR(A, b, c) Algorithm 2.3 solves (2.7) and the corresponding
-3

determined by (2.9) is independent of c, in which case * p2 (0,).

(b) If the linear program (2.1) has a solution and its constraints satisfy

the Slater constraint qualification, that is Ax < b for some x > 0,

then the sequence {(u 1,vt)} of the LPSOR(A, b, c) Algorithm 2.3 is

bounded and has an accumulation for each cc (0,) for some [ > 0.

Computational results for the Algorithm 2.3 are given in Section 5.

I ui;
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3. Normal solutions of possibly inconsistent linear inequalities

We consider in this section the possibly inconsistent system of

linear inequalitiesi
(3.1) Ax I b, x>O

where A is a given m xn matrix and b is a given vector in R If

we try to "solve" the above system by an SOR [10] procedure applied to the

obvious 2-norm minimization problem

(3.2) min l(Ax-b)+Il 2 2 rain JJAx+y-bJJ 2: min e(x,y)x>o 2 (x.y)I.02 (x~y)Z_0

one needs the condition

AT(Ax +y - b)1
(3.3) V8(x,y) > 0, for some (x,y) ERn'

LAx + y - b

to guarantee boundedness of the SOR iterates [10, Theorem 2.2], which by

the Gordan Theorem [9, Theorem 2.4.5) is equivalent to the condition that

(3.4) Ax < 0, 0 0 x > 0, has no solution

Unfortunately this condition is not satisfied in general, as is the case

when the feasible region is nonempty and unbounded. To avoid this

difficulty we use the SOR procedure of Section 2 to find the 2-norm

projection of the origin in Rn+m  on the nonempty solution set of the

linear program

(3.5) mm {eylAx- y<b}(3.5) (x~y)ceR+



which is the equivalent of the problem of minimizing the 1-norm feasibility

of (3.1)

I (3.6) min I (Ax -
xERn b),1II

The key feature of this approach is that the SOR procedure will work no

matter whether the system (3.1) is consistent or not. In either case the

SOR procedure will obtain the unique solution (i,j) of (3.5) with least

2-norm. In terms of the original inequalities (3.1), i is the unique

solution of (3.6) which minimizes ix, (Ax-b)+112. Needless to say, if

(3.1) is consistent then i is the unique 2-norm projection of the origin

in Rn on the nonempty feasible region determined by (3.1). To obtain an

SOR procedure for solving (3.5) we take the dual of the quadratic

perturbation of (3.5)

j (3.7) (xy)iR mn {ey+llx, y11 jAx-ylb)

which turns out to be [9]

(3.8) minImAT~ 1 +11uwe1 sbm min *$u,w)2u 2 m, n+nm
(u znpn~ (u ,v ,w)cR++ n

with (x,y) related to (u,v,w) by

(3.9) X a!(-ATu~v), y. (u+w-e)

Since

(3.10) V4,(u,v~w) *A(A u-v)+u+w-e+cb ,V2*(u~v~w) aAAT +1 -A I
(ATuv)AT

u_, + w- e o
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it follows that 7*j(,e,Xe) > 0 for sufficiently large A and consequently

*the iterates of the SOR algorithm of [10, Algorithm 3.2. Remark 3.2] applied

to 3.8 will have an accumulation for all positive values of c. In particular

we have the following algorithm and convergence theorem.

0 0 0 m~n~m w 02
3.1 LISOR(A, b) Algorithm Choose Cu ,v w ) CR+ , e02 and c >0.

i i 1+W 1+1 i+l
Having (ut, v ,w) determine Cu v ,w )as follows:

u ( 2 A ( (A).ul +m (AT ui-v )+u i+w i~l ))
.... for J J. . .... a.

v i+l a (vi +w(A T ui+l- v ))+

w i+l . (w1 -W(u1~1 + w1 -e))~

ii

3.2 LISOR(A, b) Convergence Theorem For each e > 0 the iterates (u ,v ,w)

t of the LISOR(A, b) algorithm are bounded and have an accumulation point

(u(£), v(c)t w(c)). For all cc (cua for some v > 0, the point p

(3.11) i: -(-A Tu(c) +v(c)), .: E(u(e) +w(c) -e)

is independent of c and is the unique solution of (3.5) with least 2-norm,

and x is the unique solution (3.6) with least lix, (Ax-b)+11 2.

Proof That the iterates Cu v ,w have an accumulation point which solves

(3.8) for all c > 0 follows from Theorem 2.2 of (10). That for cc (0,i]

for some > 0 , )  defined by (3.11) is the unique solution of (3.5)

with least 2-norm follows from the duality equivalence of (3.7) and (3.8)

and from Theorem 2.1. Since problems (3.5) and (3.6) are equivalent and

o ~ ~~ ~~, ,r. L ".. ..,).. , , ,)),
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- (Ax-b)+ for a solution of (3.5), it follows that i is the unique

solution of (3.6) with least value of lix, (Ax-b)+112, 0

We note here Eremin's algorithm [5] which is one of the few iterative

algorithms capable of handling inconsistent inequalities. Eremin gives no

computational experience and the presence in his algorithm of a positive

stepsize Ai satisfying A1 - 0 and x a may cause slow convergence.

i-i

An interesting application of the above method is to the problem of

image reconstruction techniques [7,8] where the fundamental problem is to

solve the system

(3.12) Bx a d x > 0

where typically the mxn matrix B may be of order 28000 x 6000 with less

than 1% of nonzero elements [8]. Iterative methods are well suited for such

large sparse problems. Unfortunately such methods often require assumptions

that are rarely verifiable. Typically such methods assume a priori that

the system (3.12) has a solution [7,8]. In contrast our proposed LISOR

method requires no assumptions whatsoever when applied to the equivalent

problem

(3.13) Bx ic d, -Bx < -d, x > 0

In particular LISOR((), d) will lead to the unique solution i

of min lBex-d1l with least llx, Bx-dll2.

. ,.:. , .~..... ,,.,.... ............ . ...................

. ] I ii i d | -I - 'n '112]: -::'-' ; . ... -..:"i '
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4. Normal solutions of possibly unsolvable linear programs

We consider here again the linear program (2.1) but make no assump-

tions whatsoever regarding its feasibility or solvability. The idea here

is to apply the LISOR Algorithm 3.1 to the equivalent linear complemen-

tarity problem for (2.1) [4]

(4.1) Mz + q >O, qz <O0, z > 0

where

(4.2) z -()RnI, M 0 A ( .(
To 3 t t

and u is the dual variable. Direct application of the convergenceTerm32tth IO((-I) .(
' ~~~~~~ Thoe 3)) teLSO algorithm gives that the iterates

of LISOR( , ) are bounded for all e > 0 and that for all

ce (O,Z] for some i > 0 they lead to a i which is independent of e

and such that i is the unique solution of

(4.3) min ll(-Mz-q, qz)+lj1
zR +m

with least liz, (-Mz-q, qz)+il2. Hence - (s), is an exact solution

of the primal-dual pair with least 2-norm if the linear program (2.1) is

solvable. Else, it is the unique solution of (4.3) with least 2-norm for

the vector in R2(n+ m )+l composed of the primal-dual variable z, the

primal-dual infeasibility (-Mz-q)+, and the primal-dual objective

function inequality (qz)+.

" 7i
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5. Computational results

Computational experiments have been carried so far on the LPSOR

Algorithm 2.3 only. Results on medium-sized problems were given In E11].

We give below new computational results for randomly generated large sparse

problems carried on the VAX 11/780 with double accuracy floating point addi-

tion time of 4.6 is and multiplication time of 6.0 us. Comparisons were made

with Marston's XMP revised simplex linear programing code [14]. The results

shown in Table 1 are all for a matrix A with essentially a "tridiagonal"

structure and fully dense last column and row. The XMP accuracy was to

within 12-figure accuracy of the current objective function when it managed

to obtain a solution. The accuracy of the LPSOR was measured by the -norm

of the primal infeasibility of the numerical solution and the relative

deviation of the computed maximum value from the true maximum. The table

indicates that for the accuracy obtained, the LPSOR method becomes competi-

tive with the simplex method as the problem size gets larger and that for

very large problems, SOR methods may be the only viable methods of solution.

Table 1

Comparison of the Revised Simplex Code XIP and LPSOR for Solving 2.1

m - no. of inequality constraints, n s no. of nonneutive variables

XMP LPSOR

m n Iteration No. Hr:Min:Sec Iteration No. Hr:Nin:Sec Relative Accur.

100 200 123 0:00:11 180 0:00:17 10-6

500 1,000 746 0:03:12 520 0:06:11 10.9

1,000 1,000 2.309 0:42:02 1,640 0:26:12 104

2,500 10,000 Could not solvea) 480 0:37:25 104

5,000 20,000 Could not solveb) 660 1:17:S3 104

a)program was killed after more than 3 hours of CPU time.

b)Program used virtual memory space much larger than physical memory, so It ran

inefficiently and had to be killed within 10 minutes of CPU time which
corresponded to over 8 hours of real elapsed time.

14_ 
- i i
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